Someone Has To Turn This Great Idea Into Dollars

Robert Gordon, PMP February 13, 2014

Purpose & Topics

- The purpose of this presentation is to discuss the processes central to managing a technical development and production project.
- We will discuss processes and tools that focus on these technical needs.
- We will discuss how to get the most out of these tools.
- There aren't that many slides Hopefully we can all discuss examples from our own experiences.

R&D In A Well Functioning Organization

- Technical project management is extremely challenging even when the project has the organizational, management, and sponsor support it needs.
- Technical teams often create things or combinations of things that have never existed before.
- There are many great ideas and many brilliant people thinking them up How do you get it made and shipped?
- When the going gets rough and it will a natural reaction is to ask if the team put enough effort into the 'Planning' process group.
 - If the plan incorporates a strategy that recognizes difficulty will arise at the unit level and defines actions to overcome these effects, the project has a better chance of success.

Focusing On The Technicalities

- How Does The Team Know
 - What the project is supposed to build?
 - Collect (Derived) Requirements
 - What the project is actually building?
 - Monitor & Control Project Work & Perform Integrated Change Control
 - Tools include Configuration Identification & Configuration Management
 - That what the project is building is what it thinks it is building?
 - Control (Unit Level) Quality
 - How can you learn from work already done?
 - Monitor & Control Project Work Analytical Techniques
- Technical Projects must accept the likelihood of technical unit level problems and build a plan to mitigate the impacts.

greenroom software

Example: Collect (Derived) Requirements

- Top-Level requirements are typically well understood early in the development process.
- Derived requirements produce the detailed inputs necessary to create adequate unit level tests.
- The 'Collect Requirements' process lists prototyping as one of its tools.
- Technical projects typically spend ³/₄ of the overall schedule and budget producing a sequence of prototypes with each revision being an elaboration of the previous prototype.
- Successful projects put a great deal of effort into capturing derived requirements and mapping these to unit level tests.

greenroom software embedded and industrial software engineering

testing services

How It Fits Together

testing services

- A long time ago on a project far, far away....
- Initial Testing focused on System Level Functionality.
- The team decided to focus on unit level tests many procedures were added and elaborated over time.
- Initially, the defect rate went up as latent defects were uncovered and fixed.
- Over time, the defect rate dropped.
- The developers used the test procedures as a development guide.
- Testing costs decreased over time due to automation and a lower defect rate.
- The team was able to quickly measure testing effectiveness due to good configuration management of test procedures and records. greenroom software

Isn't Testing Expensive?

- Yes, but there are techniques to reduce costs.
- Test Driven Development is very beneficial to the engineers.
 - By definition, engineers are good at passing tests.
 - Engineers are very vested in a process that encourages them to analyze root causes, further elaborate their own unit level requirements, and develop against a set of testable requirements.
 - Many engineers find engineering a test apparatus to be as rewarding as engineering components of the deliverable system.
 - Buy-in has a positive return on investment.
- The quality of unit level testing is a good indicator of the likelihood of success for technical projects.

Cost Effective Testing

- Move tests that have a higher failure rate earlier in the test sequence.
- Now that failures are grouped up front, use all of the well managed test data to search for root causes.
 - Even better, do both at the same time!
- Let's consider an example of test optimization.

- We have a production testing pipeline with four procedures.
- Assume the testing cost is only the labor required to setup the test and process the results.
 - Assume a labor rate of \$100 / hour.
- Our procedures require two hours per test per item (\$200).
- There are 100 test articles.
 - Manufacturing Example: 100 identical items under test.
 - Software Example: Each procedure tests 100 sub-units.
- Each defect requires 4 hours of rework (\$400)
- What is the testing & rework cost per article?

Ideal Testing Scenario

- If this happens, then all of our efforts in the Planning Process Group have paid off!
- What happens when we find defects during testing?
 - (We will)
 - Risk Planning addresses the near certainty that *something* isn't going to go as planned at this point.
 greenroom software

Ideal Testing Costs

• The ideal testing scenario provides a baseline for measuring testing costs.

	Ideal Test Flow
Testing Stages	4
Lot Size	100
Tests Performed	400
Cost Per Test	\$200
Testing Cost	\$80,000
Testing Cost Per Article	\$800
Percent Cost over Baseline	0.0%

# Reworks	0
Rework Cost Per Incident	\$400
Total Rework Cost	\$0
Avg Rework Cost For The Lot	\$0

Test + Rework Cost Per Article	\$800
Percent Cost over Baseline	0.0%

Unoptimized Test Flow With Defects

- Various rates of defects are found for each test procedure.
- Each item with a defect will have to be reworked at a cost of \$400 per defect.
 - We will assume our rework success rate is 100%, i.e. a reworked test article will pass a retest and any previous tests.

software

testing services

embedded and industrial software engineering

- This means that each stage has 100 first attempts with a variable rate of subsequent attempts depending on its order in the test flow.
- What is the testing and rework cost per article?

Unoptimized Testing Costs

• We can now compare unoptimized testing costs to the ideal baseline.

		Unoptimized
	Ideal Test Flow	Test Flow
Testing Stages	4	4
Lot Size	100	100
Tests Performed	400	456
Cost Per Test	\$200	\$200
Testing Cost	\$80,000	\$91,200
Testing Cost Per Article	\$800	\$912
Percent Cost over Baseline	0.0%	14.0%

# Reworks	0	21
Rework Cost Per Incident	\$400	\$400
Total Rework Cost	\$0	\$8,400
Avg Rework Cost For The Lot	\$0	\$84

Test + Rework Cost Per Article	\$800	\$996
Percent Cost over Baseline	0.0%	24.5%

Optimized Test Flow With Defects

- Once testing reveals where defects are most likely to occur, the order of procedures can be re-arranged to move defect discovery earlier in the process.
 - This is not always possible if one test depends upon the completion of a previous test.
 - In this case, is it a test or a calibration procedure?
- All other assumptions are the same.
- What is the testing and rework cost per article?

Optimized Testing Costs

• We can now compare optimized testing costs to the unoptomized testing costs and to the ideal baseline.

	Ideal Test Flow	Unoptimized Test Flow	Optimized Test Flow
Testing Stages	4	4	4
Lot Size	100	100	100
Tests Performed	400	456	428
Cost Per Test	\$200	\$200	\$200
Testing Cost	\$80,000	\$91,200	\$85,600
Testing Cost Per Article	\$800	\$912	\$856
Percent Cost over Baseline	0.0%	14.0%	7.0%
# Reworks	0	21	21
Rework Cost Per Incident	\$400	\$400	\$400
Total Rework Cost	\$0	\$8,400	\$8,400
Avg Rework Cost For The Lot	\$0	\$84	\$84
Test + Rework Cost Per Article	\$800	\$996	\$940
Percent Cost over Baseline	0.0%	24.5%	17.5%

• Mileage will vary depending on test & rework costs, but there is <u>always</u> a savings when failures are caught early.

greenroom software embedded and industrial software engineering testing services

Test Procedure Elimination

- What about procedure D?
 - It has a very low defect rate.
 - Can we eliminate it?
 - Can we improve our automation to lower costs?
- This is a Risk Management Question.
 - What is the impact in terms of dollars? (Quantifiable)
 - What is the impact in terms of your company's reputation? (Might want to talk to management)
- We can use an expected monetary value analysis to determine whether the cost of a test exceeds the cost of replacing or repairing an untested item that fails after delivery.
- If Test Cost ≥ (Defect Rate) x (Return / Repair Cost), we can consider eliminating the test procedure.

Conclusions

- Technical Projects must accept the likelihood of difficulties and plan accordingly.
- Technical issues are dealt with at the unit level.
- Good configuration management and record keeping supports analytical techniques to uncover root causes.
- Analytical Techniques are an effective source of unit level requirements and test procedures.
- Success with unit level testing is a good indicator that the overall system will perform well at system level testing.
- Testing can be organized so that it maximizes effectiveness while streamlining costs.

Thank You!

